Month: January 2025

  • Getting Started with AI-Powered Coding: A Beginner’s Guide

    Getting Started with AI-Powered Coding: A Beginner’s Guide

    In recent years, artificial intelligence has revolutionized how developers write code. From intelligent code completion to automated testing, AI tools are becoming essential for modern programming.

    This guide will help you understand how to leverage AI to enhance your coding workflow.

    The most popular AI coding assistants like GitHub Copilot and Amazon CodeWhisperer (aws.amazon.com/codewhisperer) integrate directly with your IDE, providing real-time suggestions as you type.

    These tools learn from vast repositories of open-source code to offer context-aware completions and help you write better code faster.

    Additional tools worth exploring include Tabnine (tabnine.com) for universal code completion and IBM’s Project CodeNet (research.ibm.com/projects/codenet) for AI model training. Reference: “The Rise of AI-Powered Coding” by the IEEE Software Engineering Institute.

    Getting Started with AI-Powered Coding: A Beginner's Guide

    To get started, choose an AI coding assistant that supports your preferred programming language and development environment. Many offer free trials so you can experiment before committing.

    Remember that while AI can accelerate development, it’s crucial to review and understand the generated code rather than accepting suggestions blindly.

    Maximizing Efficiency with AI Code Generation

    AI code generation has transformed from a novelty to an essential productivity tool. Understanding how to effectively prompt and guide AI models can significantly improve your development speed and code quality.

    Leading platforms like OpenAI’s ChatGPT (chat.openai.com) and Google’s VertexAI (cloud.google.com/vertex-ai) offer powerful code generation capabilities. According to Stack Overflow’s Developer Survey, over 70% of developers now use AI coding tools to improve productivity.

    For enterprise solutions, Microsoft’s Azure OpenAI Service (azure.microsoft.com/products/cognitive-services/openai-service) provides secure, scalable AI code generation. Reference: “AI-Assisted Software Development” in the Journal of Software Engineering.

    First, provide clear context when working with AI coding tools. Include relevant comments, function signatures, and documentation to help the AI understand your intentions. Break complex tasks into smaller, well-defined components that are easier for AI to assist with.

    AI-Powered Code Review and Quality Assurance

    Artificial intelligence is revolutionizing code review processes by automatically identifying potential bugs, security vulnerabilities, and performance issues. Modern AI tools can analyze codebases at scale, providing insights that might be missed in manual reviews.

    Leading solutions include DeepCode by Snyk (snyk.io), SonarQube’s AI-powered analysis (sonarqube.org), and Amazon CodeGuru (aws.amazon.com/codeguru). Reference: Forrester Research Report “AI in Software Quality Assurance” (2024).

    According to Microsoft Research, AI-powered code reviews can identify up to 30% more potential issues compared to traditional manual reviews. Tools like GitHub’s Advanced Security (github.com/features/security) combine AI analysis with security expertise.

    Integration platforms like JetBrains’ Qodana (jetbrains.com/qodana) provide comprehensive code quality analysis across multiple languages and frameworks.

    Debugging and Troubleshooting with AI Assistance

    AI-powered debugging tools are changing how developers identify and fix code issues. According to studies by DevOps Research and Assessment (DORA), teams using AI-assisted debugging resolve issues 40% faster on average.

    Popular platforms include:

    – Microsoft’s Visual Studio IntelliCode (visualstudio.microsoft.com/services/intellicode)

    – Google’s Error Lens (error-lens.appspot.com)

    – Rollbar’s AI-powered error tracking (rollbar.com)

    Reference: “Advanced Debugging Techniques with AI” published in ACM’s Computing Surveys.

    The Chronicle of Software Engineering reports that companies like Netflix and Facebook have reduced debugging time by up to 50% using AI-assisted tools. For enterprise debugging, tools like New Relic’s AI Ops (newrelic.com) provide comprehensive monitoring and troubleshooting.

    AI in Test Automation and Quality Control

    Test automation has reached new heights with AI-powered tools that can generate, maintain, and execute test cases automatically. Leading solutions include:

    – Testim (testim.io)

    – Perfecto (perfecto.io)

    – Applitools (applitools.com)

    According to Gartner’s latest Testing Tools Market Report, AI-driven testing tools can reduce test maintenance effort by up to 60%. Reference: “The Future of Software Testing” by the International Software Testing Qualifications Board (ISTQB).

    Microsoft’s Visual Studio Test Platform (visualstudio.microsoft.com) and JetBrains’ TeamCity (jetbrains.com/teamcity) now incorporate AI-powered testing capabilities. The World Quality Report 2023-2024 indicates that 85% of organizations plan to implement AI-based testing tools by 2025.

    Leveraging AI for Code Documentation and Maintenance

    Documentation is crucial for code maintainability, and AI tools are making it easier to create and maintain comprehensive documentation. Leading solutions include:

    – ReadMe.com (readme.com)

    – DocFX (dotnet.github.io/docfx)

    – Confluence’s AI documentation assistant (atlassian.com/software/confluence)

    Reference: “The Impact of AI on Technical Documentation” by the Society for Technical Communication.

    According to Stack Overflow’s Documentation Survey, teams using AI documentation tools report 45% better documentation coverage. Enterprise solutions like Swagger AI (swagger.io) and Postman (postman.com) provide comprehensive API documentation capabilities.

    AI-Driven Code Optimization and Performance Tuning

    Artificial intelligence is revolutionizing how developers optimize code performance. According to Intel’s AI Lab research, machine learning-based optimization can improve code performance by up to 25%.

    Leading optimization platforms include:

    – Intel’s OneAPI (oneapi.io)

    – NVIDIA’s CUDA-X AI (developer.nvidia.com/cuda-x-ai)

    – Google’s AutoML Performance (cloud.google.com/automl)

    Reference: “Machine Learning for Software Performance Optimization” in ACM Performance Evaluation Review.

    Companies like Netflix and Uber use AI optimization tools from Datadog (datadog.com) and New Relic (newrelic.com) to maintain high-performance systems at scale.

    Securing Code with AI-Based Analysis

    Security is paramount in modern software development. According to Gartner, AI-powered security tools can identify 90% of common vulnerabilities before deployment.

    Leading security platforms include:

    – Snyk (snyk.io)

    – Checkmarx (checkmarx.com)

    – Fortify by Micro Focus (microfocus.com/fortify)

    Reference: OWASP’s “AI in Application Security” guide (owasp.org/ai-security).

    Microsoft’s Security Development Lifecycle (microsoft.com/sdl) now incorporates AI-powered analysis tools. For cloud applications, tools like AWS Security Hub (aws.amazon.com/security-hub) provide comprehensive security monitoring.

    AI-Assisted Code Refactoring and Modernization

    Refactoring legacy code is easier with AI tools that can understand complex codebases. According to McKinsey’s Technology Report, AI-assisted refactoring can reduce modernization time by up to 40%.

    Popular refactoring tools include:

    – JetBrains’ ReSharper (jetbrains.com/resharper)

    – SonarQube’s Clean Code features (sonarqube.org)

    – Sourcegraph (sourcegraph.com)

    Reference: “AI-Driven Software Modernization” by Carnegie Mellon’s Software Engineering Institute.

    Enterprise solutions like IBM’s Application Modernization (ibm.com/cloud/modernization) and Microsoft’s AI-powered refactoring tools help organizations modernize legacy systems efficiently.

    Future Trends in AI-Powered Development

    The future of AI in software development promises even more sophisticated tools and capabilities. According to Gartner’s predictions, by 2025, 70% of new applications will use AI-powered development tools.

    Leading research organizations advancing AI in development:

    – OpenAI (openai.com)

    – DeepMind (deepmind.com)

    – Microsoft Research (microsoft.com/research)

    Reference: “The Future of Software Development” by MIT Technology Review (2024).

    Major cloud providers like AWS (aws.amazon.com), Google Cloud (cloud.google.com), and Microsoft Azure (azure.microsoft.com) are investing heavily in AI-powered development tools. The IEEE Computer Society predicts that AI pair programming will become standard practice by 2026.

  • Module 10: Quiz and Assessments

    Lesson 1: Quiz on Next.js Basics

    Question 1: What is the default port used by a Next.js application in development mode?

    1. A) 8000
    2. B) 3000
    3. C) 5000
    4. D) 8080

    Answer: B) 3000

    Question 2: Which method is used to fetch data at build time in Next.js?

    1. getServerSideProps
    2. getStaticProps
    3. getInitialProps
    4. getDynamicProps

    Answer: B) getStaticProps

    Question 3: Which of the following is NOT a rendering method in Next.js?

    1. Static Site Generation (SSG)
    2. Server-SideRendering (SSR)
    3. Incremental Static Regeneration (ISR)
    4. Continuous Site Rendering (CSR)

    Answer: D) Continuous Site Rendering (CSR)

    Lesson 2: Advanced Quiz

    Question 4: How can you define dynamic routes in Next.js?

    1. Using curlybraces {} in file names
    2. Using squarebrackets [] in file names
    3. Using anglebrackets <> in file names
    4. Using parentheses() in file names

    Answer: B) Using square brackets

    Question 5: What is the purpose of

    1. Tofetch data on the server side

    in file names

    in Next.js?

    1. Togenerate dynamic routes during build time
    2. Toset up API routes
    3. Tohandle CSS imports

    Answer: B) To generate dynamic routes during build time

    Question 6: Which command is used to start a Next.js application in production mode?

    1. npm run dev
    2. npm start
    3. npm run build
    4. npm serve

    Answer: B) npm start

  • Module 9: Building a Real-World Application

    Lesson 1: Setting up the Project Structure

    Creating a well-organized project structure is essential for maintainable and scalable applications. Follow these best practices:

    •  Structure Overview:

    /components
    /pages
    /public
    /styles
    /utils

      • Explanation:
        • components/ : Reusable UI components.
        • pages/ : Route-based structure for the application.
        • public/ : Static assets such as images and fonts.
        • styles/ : Global and module-specific CSS files.
        • utils/ : Helper functions and utilities.

    Lesson 2: Using an External API

    Learn how to fetch and integrate data from an external API in a Next.js application.

      • Steps:
        1. Choosean API (e.g., OpenWeatherMap, GitHub API).
        2. Fetch data using getStaticProps or getServerSideProps :

    export async function getStaticProps() {
    const res = await fetch(‘https://api.example.com/data’); const data = await res.json();

    return {
    props: { data },
    };
    }

    export default function Page({ data }) { return <div>{JSON.stringify(data)}</div>;
    }

      • Best Practices:
        • Use environment variables for API keys.
        • Handle errors gracefully with try-catch blocks or fallback content.

    Lesson 3: Implementing Authentication

     Add user authentication to your application using libraries like next-auth or custom APIs.

      • Steps with ******** next-auth :
        1. Install next-auth :

          npm install next-auth

        2. Configure anAPI route:

          import NextAuth from ‘next-auth’;
          import Providers from ‘next-auth/providers’;

          export default NextAuth({ providers: [
          Providers.GitHub({
          clientId: process.env.GITHUB_CLIENT_ID, clientSecret: process.env.GITHUB_CLIENT_SECRET,
          }),
          ],
          });

        3. Protectpages using getSession :

          import { getSession } from ‘next-auth/client’;

          export async function getServerSideProps(context) { const session = await getSession(context);
          if (!session) { return {
          redirect: {
          destination: ‘/api/auth/signin’, permanent: false,
          },
          };
          }

          return {
          props: { session },
          };
          }

    Lesson 4: SEO Optimization

    Optimize your application for search engines using built-in Next.js features.

      • Steps:
        1. Add metadata with the <Head> component:

          import Head from ‘next/head’;

          export default function Page() { return (
          <>
          <Head>
          <title>My Page</title>
          <meta name=”description” content=”This is my page description.” />
          </Head>
          <div>Welcome to My Page</div>

          );
          }

        2. Optimize images with the <Image> component.
        3. Use dynamic rendering methods (SSR or ISR) for up-to-date
      • Best Practices:
        • Use descriptive URLs and headings.
        • Integrate schema markup for rich results.

    Additional Resources

     Example Projects

  • Module 8: Advanced Concepts

    Lesson 1: Image Optimization

    Next.js provides built-in support for image optimization, enabling faster load times and better performance.

          • How It Works:
            • Use the <Image /> component from next/image to serve optimized images.
            • Example:
          • import Image from ‘next/image’;

            export default function Home() {
            return <Image src=”/example.jpg” alt=”Example” width={500} height={500} />;
            }

            • Automatically adjusts image size based on the device’s screen size and resolution.
        • Features:
          • Lazy loading by default.
          • Automatic format conversion (e.g., JPEG to WebP).
          • Built-in caching for optimized delivery.
      • Best Practices:
        • Use the quality prop to balance image quality and size.
        • Leverage external image providers via next.config.js .

    Lesson 2: Middleware in Next.js

    Middleware in Next.js allows you to run custom code before a request is completed. It’s commonly used for authentication, logging, and request redirection.

      • How It Works:
        • Create a middleware file in the pages or middleware directory.
        • Example:

    export function middleware(req) { const url = req.nextUrl.clone();
    if (!req.headers.get(‘authorization’)) { url.pathname = ‘/login’;
    return NextResponse.redirect(url);
    }
    return NextResponse.next();
    }

    • Use Cases:
      • Redirect unauthorized users.
      • Add custom headers to requests.  Log user activities.
      •  Best Practices:
        • Test middleware locally to ensure accuracy.
        • Use middleware sparingly to avoid performance bottlenecks.

    Lesson 3: Internationalization (i18n)

    Next.js has built-in support for internationalization, allowing you to create multi-language applications effortlessly.

      • Setup:
        • Configure the i18n property in next.config.js :

    module.exports = { i18n: {
    locales: [‘en’, ‘fr’, ‘de’],
    defaultLocale: ‘en’,
    },
    };

      • Usage:
        • Access the current locale using useRouter :

    import { useRouter } from ‘next/router’;

    export default function Home() { const { locale } = useRouter();
    return <p>Current locale: {locale}</p>;
    }

      • Dynamic Translations:
        • Use libraries like next-i18next or react-intl for dynamic translation management.
    • Best Practices:
    • Store translation files in a structured directory.
    • Regularly review and update translations.

    Additional Resources

    Advanced Features

  • Module 7: Deployment

    Lesson 1: Vercel Platform for Next.js

    Vercel is the recommended platform for deploying Next.js applications. It provides a seamless integration with Next.js and offers features like serverless functions, global CDN, and analytics.

    Features:

    •  Automatic deployments from GitHub, GitLab, or Bitbucket.
    • Optimized builds for performance.
    •  Serverless backend support with API routes.

     Steps to Deploy:

    1. Signup for a Vercel account at Vercel.
    2. Connect your Git
    3. Vercelautomatically detects js and deploys your app.
    4. Access your app via the provided

    Lesson 2: Deploying a Next.js App

    Next.js applications can be deployed using various platforms besides Vercel. Here are the common steps:

    1. Build the Application:

    •  Generate the production-ready build:

    npm run build

    2. Run Locally:

    •  Start the production server:

    npm start

    3. Deploy to Other Platforms:

        • Netlify:
            • Use next-on-netlify for full compatibility.
            • Follow the deployment guide: Netlify Docs.
        • AWS:
          • Use AWS Amplify for seamless deployment.
      • Custom Server:
        • Use npm run build to generate the .next folder.
        • Serve the app using Node.js.

    Lesson 3: Optimizing for Production

    Optimizing your Next.js application ensures better performance, faster load times, and improved user experience.

      • Image Optimization:
        • Use the <Image /> component to serve optimized images.
        • Example:

    import Image from ‘next/image’;

    export default function Home() {
    return <Image src=”/example.jpg” alt=”Example” width={500} height={500} />;
    }

      • Code Splitting and Lazy Loading:
        • Automatically handled by Next.js.
        • Use dynamic imports for large libraries:

    import dynamic from ‘next/dynamic’;

    const HeavyComponent = dynamic(() => import(‘../components/HeavyComponent’));

        • Caching and Compression:
          • Enable caching with headers in next.config.js .
          • Use Gzip or Brotli compression.
      • Static Content:
        • Pre-render pages using SSG or ISR.
        • Serve assets from the public folder.

    Additional Resources

    Deployment Guide

  • Module 6: API Routes

    Lesson 1: Creating API Routes

    Next.js allows you to create serverless API routes for handling backend logic directly in your application. These routes are created inside the pages/api/ directory.

    • Basic API Route:

    export default function handler(req, res) { res.status(200).json({ message: ‘API Route Working!’ });
    }

    • File Structure:
      • pages/api/example.js -> Accessible at /api/example .
    • Use Cases:
      • Fetch data from external APIs and process it.
      • Handle form submissions.
      • Create CRUD operations for your app.

    Lesson 2: Handling Requests and Responses

    API routes handle HTTP methods like GET, POST, PUT, DELETE, etc. Using the req (request) and res (response) objects, you can define the logic based on the request type.

    • Example: Handling Different HTTP Methods:

    export default function handler(req, res) { if (req.method === ‘GET’) {
    res.status(200).json({ message: ‘This is a GET request’ });
    } else if (req.method === ‘POST’) { const data = req.body;
    res.status(201).json({ message: ‘POST request received’, data });
    } else {
    res.status(405).json({ message: ‘Method Not Allowed’ });
    }
    }

      • Parsing JSON Data:
        • By default, Next.js parses incoming JSON payloads.
        • Ensure your request headers include Content-Type: application/json for POST requests.

    Lesson 3: Middleware in API Routes

    Middleware functions add additional processing logic to API routes. They can be used for tasks such as authentication, logging, or request validation.

    • Example: Middleware for Authentication:

    export default function handler(req, res) { const { authorization } = req.headers;

    if (!authorization || authorization !== ‘Bearer mysecrettoken’) { return res.status(401).json({ message: ‘Unauthorized’ });
    }

    res.status(200).json({ message: ‘Authorized request’ });
    }

      • Using Third-Party Middleware:
        • Libraries like cors can be integrated easily:

    import Cors from ‘cors’;
    const cors = Cors({ methods: [‘GET’, ‘POST’] });
    function runMiddleware(req, res, fn) {
    return new Promise((resolve, reject) => { fn(req, res, (result) => {
    if (result instanceof Error) { return reject(result);
    }
    return resolve(result);
    });
    });
    }

    export default async function handler(req, res) { await runMiddleware(req, res, cors); res.status(200).json({ message: ‘CORS enabled!’ });
    }

    Additional Resources

    API Routes Docs

  • Module 5: Data Fetching

    Lesson 1: getStaticProps

    getStaticProps is a method used to fetch data at build time. This is ideal for pages where the content doesn’t change frequently, ensuring high performance and scalability.

    How It Works:

    • Use getStaticProps in any page component.
    • Fetch data during the build process.
    • Example:

    export async function getStaticProps() {
    const data = await fetch(‘https://api.example.com/data’).then(res => res.json()); return {
    props: { data },
    };
    }

    export default function Page({ data }) { return <div>{JSON.stringify(data)}</div>;
    }

    Advantages:

    •  Improved performance with pre-rendered pages.
    • Content is served as static HTML.

     Limitations:

    •  Pages require rebuilding to update data.

    Lesson 2: getServerSideProps

    getServerSideProps is a method used to fetch data on each request. It’s suitable for dynamic content that changes frequently or user-specific data.

    How It Works:

    • Use getServerSideProps in your page component.
    • Fetch data on every request to the server.
    • Example:

    export async function getServerSideProps(context) {
    const data = await fetch(‘https://api.example.com/data’).then(res => res.json()); return {
    props: { data },
    };
    }

    export default function Page({ data }) { return <div>{JSON.stringify(data)}</div>;
    }

    Advantages:

    •  Always serves the latest data.
    •  Ideal for personalized or time-sensitive content.

    Limitations:

    •  Slower performance compared to static methods.

    Lesson 3: getStaticPaths

    getStaticPaths works alongside getStaticProps to generate dynamic routes for static pages. It’s used when pre-rendering pages with dynamic parameters.

    How It Works:

    • Define paths at build time.
    • Use getStaticPaths to return a list of route parameters.
    • Example:

    export async function getStaticPaths() {
    const data = await fetch(‘https://api.example.com/posts’).then(res => res.json()); const paths = data.map(post => ({ params: { id: post.id.toString() } }));

    return { paths, fallback: false };
    }

    export async function getStaticProps({ params }) {
    const post = await fetch(`https://api.example.com/posts/${params.id}`).then(res => res.json()); return { props: { post } };
    }

    export default function Post({ post }) { return <div>{post.title}</div>;
    }

    Options for ******** fallback :

    •   false : Only generate specified paths. Requests for undefined paths return a 404.
    •   true : Generate new paths on the fly and cache them.
    •   blocking : New paths are generated during request but delay the response until complete.

    Advantages:

    •  Supports dynamic routing with pre-rendered pages.
    • Flexible with fallback options.

    Limitations:

    Requires careful handling of undefined routes if fallback is used.

    Additional Resources

    Data Fetching Docs

  • Module 4: Styling in Next.js

    Lesson 1: CSS Modules

    CSS Modules provide a scoped and modular approach to styling your components. By using CSS Modules, you avoid naming conflicts and ensure styles are applied only where intended.

     How to Use:

    1. Create a CSS file with the .module.css extension (e.g., styles/Home.module.css ).
    2. Import it into your component:

    import styles from ‘./Home.module.css’;

    export default function Home() {
    return <h1 className={styles.title}>Welcome to Next.js</h1>;
    }

    extension (e.g., styles/Home.module.css ).

    1. The imported styles object maps class names to unique identifiers.

    Advantages:

    • Automatic scoping of CSS.
    • No need to worry about global namespace pollution.

    Lesson 2: Styled JSX

    Styled JSX is a built-in CSS-in-JS solution provided by Next.js. It allows you to write scoped styles directly within your components.

    How to Use:

    export default function Home() { return (

    <h1>Welcome to Next.js</h1>

    );
    }

    Features:

    •  Scoped styles ensure no CSS leakage.
    •  Dynamic styles can use JavaScript variables.

    Dynamic Styling Example:

    export default function Home() { const isActive = true;
    return (

    <h1>Welcome</h1>

    );
    }

    Lesson 3: Integrating Tailwind CSS

    Tailwind CSS is a utility-first CSS framework that can be easily integrated with Next.js for rapid styling.

     Installation Steps:

    1. InstallTailwind CSS and its dependencies:

    npm install -D tailwindcss postcss autoprefixer
    npx tailwindcss init

    1. Configure tailwind.config.js to enable JIT mode and specify content paths:

    module.exports = {
    content: [‘./pages/**/*.{js,ts,jsx,tsx}’, ‘./components/**/*.{js,ts,jsx,tsx}’], theme: {
    extend: {},
    },
    plugins: [],
    };

    1. AddTailwind to your global CSS file (e.g., styles/globals.css ):

    @tailwind base;
    @tailwind components;
    @tailwind utilities;

    1. Importthe global CSS file in pages/_app.js :

    import ‘../styles/globals.css’;

    function MyApp({ Component, pageProps }) { return ;
    }

    export default MyApp;

    Advantages:

    • Rapid prototyping with utility classes.
    • Fully customizable design system.

    Additional Resources

    Styling  Guide

  • Module 3: Rendering Methods

    Lesson 1: Static Site Generation (SSG)

    Static Site Generation is a rendering method that generates HTML pages at build time. These pages are then served as static files, ensuring high performance and scalability.

    How It Works:

    • Use the getStaticProps function to fetch data during build time.
    • Example:

    export async function getStaticProps() {
    const data = await fetch(‘https://api.example.com/data’).then((res) => res.json()); return {
    props: { data },
    };
    }

    • Suitable for pages with content that doesn’t change often.

    Advantages:

    • Better performance with pre-rendered static files.
    • Improved SEO due to ready-to-serve HTML.

    Lesson 2: Server-Side Rendering (SSR)

    Server-Side Rendering generates the HTML page dynamically on each request. This is useful for pages with frequently changing content or user-specific data.

    How It Works:

    • Use the getServerSideProps function to fetch data on each request.
    •  Example:

    export async function getServerSideProps(context) {
    const data = await fetch(‘https://api.example.com/data’).then((res) => res.json()); return {
    props: { data },
    };
    }

    • The function runs on the server and ensures the page is rendered with up-to-date data.

    Advantages:

    • Real-time data rendering.
    • Suitable for personalized content.

    Lesson 3: Incremental Static Regeneration (ISR)

    ISR allows you to update static content without rebuilding the entire application. This is ideal for apps that need the performance of SSG with occasional data updates.

    How It Works:

    • Use revalidate in getStaticProps to specify the update interval.
    • Example :

    export async function getStaticProps() {
    const data = await fetch(‘https://api.example.com/data’).then((res) => res.json()); return {
    props: { data },
    revalidate: 10, // Update every 10 seconds
    };
    }

    • The updated page is served seamlessly after the specified interval.

    Advantages:

    • Combines the speed of static sites with dynamic updates.
    • Reduces server load compared to SSR.

    Additional Resources

    Rendering Docs

  • Module 2: Pages and Routing

    Lesson 1: Dynamic Routing

    Dynamic routing in Next.js allows you to create pages that adapt to different data inputs. This is achieved using square bracket syntax for dynamic segments in the pages/ directory. For example:

    • File Structure:

    pages/post/[id].js

    • Accessing Dynamic Parameters: Use the useRouter hook or server-side methods like getStaticProps or getServerSideProps to retrieve dynamic values:

    import { useRouter } from ‘next/router’;
    export default function Post() { const router = useRouter(); const { id } = router.query;

    return

    Post ID: {id}

    ;
    }

    Lesson 2: API Routes

    API routes allow you to create serverless backend functionality directly within your Next.js application. These are created inside the pages/api/ directory. Example:

    •  File Structure:

    pages/api/hello.js

    • Sample API Route:

    export default function handler(req, res)
    { res.status(200).json({ message: ‘Hello, API!’ });
    }

    • Usage: Call the API route from the frontend using fetch :

    fetch(‘/api/hello’)
    .then((res) => res.json())
    .then((data) => console.log(data));

    Lesson 3: Catch-All and Nested Routes

    Catch-all routes allow you to capture multiple dynamic segments in a single route. Use square brackets with an ellipsis (… ) for this purpose.

    •  File Structure:

    pages/post/[…slug].js

    • Accessing Parameters:

    import { useRouter } from ‘next/router’;

    export default function Post() { const router = useRouter(); const { slug } = router.query;

    return

    Slug: {slug.join(‘/’)}

    ;
    }


    Nested routes allow you to structure files and directories for better organization:

    •  Example Structure:

    pages/
    blog/
    index.js -> /blog [slug].js -> /blog/:slug

    Additional Resources

    Learn More